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An attempt has been made to describe the axial segregation of solid particles of two dimensions 
in a horizontal drum mixer. For this purpose the Kolmogorov's forward diffusion equation 
with variable diffusion coefficient and zero drift velocity was used. For the case of "pure" segrega
tion this approach has given good results. 

At mixing of the solid phase in a rotating horizontal drum mixer individual particles 
are in mutual motion both in axial and radial directions. If properties of these 
particles do not differ significantly their motion in space and time can be described 
satisfactorily by use of the Fick's law 

OC - = DVc 
at 

(1) 

with the constant diffusion coefficient D, while c denotes concentration of particles, 
indicated e.g. by a paint1 ,2. In agreement with this equation after sufficiently long 
time of mixing (i.e. practically in the stationary state) uniform particle distribution 
in tbe bulk of the mixer is reached. 

On the contrary in systems in which the particles differ in their size or density 
and shape segregation of individual types takes place. This phenomena has been 
studied experimentally in detaiI3 - 9 , where first of all Donald and Roseman4 ,s 

have qualitatively explained in a satisfactory way why it takes place. Attempts have 
also been made to describe segregation by use of model relationsS,lO-12. 

Fan and ShinS have used for description of the segregation phenomena in the 
axial direction the Kolmogorov's forward diffusion equation (see e.g. 13) 

ox a 02 
- + - [V(z) x] - - [D(z)x] = 0 at oz OZ2 

(2) 

* Part LXXII in the Series Studies on MixL'1g; Part LXXI: Collect. Czech. Chern. Commun_ 
52, 2640 (1987). 
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for spherical particles of two dimensions, while by symbol x is denoted concentration 
(mass fraction) of smaller particles and by symbol V drift velocity of these particles. 
The authors have made an attempt to verify experimentally this relation so that at 
the beginning they estimated the shape of functions V(z) and D(z) as two first infini
tesimal moments of transitive probabilities describing motion of particles in the 
axial direction. Numerical solution of Eq. (2) then gave results which were in satis
factory agreement with the made experiments. 

The authors have also pointed to the fact that the classical type of Fick's law 
with variable diffusion coefficient (see e.g.!4) 

ox = ~ [D(Z) OX] 
ot oz oz (3) 

does not enable to describe the segregation phenomena as solution of this equation 
in the stationary state leads to the uniform spacial particle distribution. 

In this study the identical problem is studied, which differs first of all - as will 
be demonstrated in discussion - from the above quoted paper by the method of 
determination of coefficients of the diffusion equation. 

THEORETICAL 

Motion of individual solid particle in a rotating drum mixer can be generally con
sidered to be random and continuous both in time and space. If it is assumed that 
it is determined only by initial conditions and is independent of intermediate states, 
motion of such a particle can be considered to be the diffusional Markov process!3. 
If we consider the description of its kinematics as sufficiently accurate, motion of an 
individual particle in the three-dimensional space can be generally characterised by 
the Kolmogorov's forward differential equation 

Of3 + V . [V(x, t)f3] ~ (V 0 V): [D(x, t)f3] = 0, 
ot 

(4) 

in which V denotes the vector of drift velocity, 0 tensor of second order, describing 
the relative motion of the considered particle in the mixture. 
The function 

(5) 

is the three-dimensional transitive probability density, that roughly speaking -
the particle will be located in the moment t in close vicinity of the point with the 
radius-vector x at the condition, that in some preceding moment to it was in the 
point xo. 
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Studies on Mixing 773 

Let us state concrete conditions at which Eq. (4) will be applied and also assump
tions which will lead to its simplification. Discussion of these assumptions will be 
also given in the discussion of results of this study. 

Let us consider that mixing of solid particles takes place in a closed rotating drum 
mixer of cylindrical shape with radius R and length 2L. The axis of its cylindrical 
symmetry is oriented strictly horizontally, so that gravitation does not affect motion 
of solid particles in the axial direction. The speed of rotation of the mixer is constant. 
The walls of the mixer could not be penetrated by solid particles and adhesivity 
of particles to the wall does not exist. The mixer is filled by solid particles of constant 
density and of two characteristic dimensions; their dimensions and number do not 
change significantly during the process. 

From this summary first of all results the form of the boundary condition of Eq. 
(4): flow ofparticJes in each point of the mixer surface is equal to zero - as concerns 
the terminology of random processes the surface is a reflexing boundary, i.e. 

(6) 

where dS denotes an oriented element of the mixer surface. 

It would be suitable to write Eqs (4) and (6) in cylindrical coordinates. But in the 
next part the process will be studied only in the axial direction, i.e. in the direction 
of horizontal coordinate z. The terms in these equations will be averaged with 
respect to the angular and radial coordinates cp and r. Probability density in the 
first term will take the form 

At averaging of other terms it is possible to interchange the volume integrals for 
surface ones on the cylindrical part of the mixer surface. The terms denoting reflexi
vity on this part of the surface are with regard to Eq. (6) equal to zero; integration 
of other terms makes possible to define coefficients of a unidimensional equation: 

(8) 

the integral in this relation over the region H is a simplifed expression of the quadruple 
integral in the form (7). Vz(x, t) denotes the axial component of drift velocity, so 
that the term on the left hand side of the equation is a scalar quantity. Similarly it 
would be possible to define the diffusion coefficient of unidimensional diffusion 
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D(z, t) in the axial direction and Eq. (4) then takes the form 

of a 02 

at + oz [V(z, t)f] - OZ2 [D(z, t)f] = o. (9) 

This equation enables - in the case that the form of coefficients V and D is apriori 
known - to find the complete probability characteristics of random motion of the 
solid particle in axial direction. 

Further on we will assume that the number of particles of larger dimensions is 
sufficiently large and that the probability density can be considered to be proportional 
to the concentration of these particles expressed in mass fractions. Then the relation 
holds: 

ax! a 02 
- + - [V(z, t) Xi] - - [D(z, t) xa = 0, 
at oz OZ2 

(10) 

where 

(11) 

denotes the mass fraction of particles of larger dimensions (concentration of larger 
component) averaged in the given point of the axial coordinate with respect to radial 
and angular coordinate. To Eq. (6) correspond in the single-dimensional case the 
boundary conditions on both ends of the mixer 

lim [V(Z, t) Xi - i. (D(z, t) Xi)] = o. 
z-+±L OZ 

(12) 

Finally let us made assumptions on coefficients in Eq. (10). First of all it will be as
sumed that in a closed mixer the effect of drift velocity of the solid phase is negligible 
in comparison with the effect of diffusion coefficient. According to this assumption, 
it holds 

V(z, t) :; o. (13) 

For the diffusion coefficient the following cases will be considered: 

a) For "pure" segregation, i.e. for the case of initial uniform distribution of com
ponents in the bulk of the mixer the diffusion coefficient depends only on the length 
coordinate, in the way that it is the even function of this coordinate with respect 
to the centre of the mixer. At these assumptions, it results from Eqs (10) to (13) 

OXi = o2[D(z) xa 
at OZ2 

[D(z) = D( -z)] (14) 
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with the initial and boundary conditions 

lim a(DXi) = 0 . 
z .... ±L az ' lim Xi(Z, t) = XjO = const. 

1-+0 

(15) 

At these conditions Eq. (14) has the solution which is also the even function with 
respect to the centre of the mixer and which has for the stationary case the form 

lim Xi(Z, t) = Xis(Z) = IX/D(z) , (16) 
' .... 00 

where IX is the integration constant. 

b) In the case of "pure" mixing the diffusion coefficient is constant Dm =t= Dm(z). 
This type of relocation of the solid phase can exist only for the case of homogeneous 
particles differing only by their colour. Instead of relations (14) and (l5) for this 
case the relations are obtained 

ax 
at 

lim ox = o. 
z .... ±LaZ ' 

lim = xo(z) (17) 
1-+0 

for which even the analytical solution2 can be found (see also e.g. 15) while for the 
stationary state holds x(z, 00) = const. 

c) In the case of real process in the horizontal mixer, superposition of these two 
phenomena takes place. An attempt has been made to approximate this situation 
by a model, where the asymmetric concentration profile in the charge is affected by 
mixing. Thus first of all the term asymmetry indicator is introduced which is the 
difference of average concentrations in the left and right parts of the mixer, given by 

let) = - Xi(Z, t) dz - Xi(Z, t) dz , 1 If+L f-" I 
L +. -L 

(18) 

where E is an arbitrary small positive number. 

It is obvious that the asymmetry indicator can reach values within the range 
o ;£ 1(1) ;£ 1. Next it is assumed that in a real mixer the diffusion coefficient charac
terising the mixing is directly proportional to the asymmetry indicator; the effect of 
diffusion coefficient characterising segregation is directly proportional to the dif
ference of this indicator to one. Action of both these coefficients is aditive, i.c. 

Dm = AI(t); D(z) = B(1 - l(t))jxis(z) (19) 
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second of these relation results with regard to Eq. (16). Both A and B are constants. 

The resulting diffusion equation then becomes 

ax a2 
_i = _ {[Al(t) + B(1 - l(t»jxis(z)] x;} at (}Z2 

(20) 

with the initial and boundary conditions 

lim ~ {[AI(t) + B(1 - I(t»)jxis(z)] x;} = 0; 
z-+±L az lim Xi = XiO(Z) 

''''0 
(21) 

The results obtained after numerical integration of these relations were compared 
with the experimental data. 

RESULTS 

The experiments were performed in a horizontal drum mixer 0'12 m long, with 
internal diameter 0·074 m. Speed of rotation of the mixer was 70 rpm. Two fractions 
of the mixing material - sea sand of diameter 0'2 - 0·25 . 10- 3 m and 0'385 to 
0·43 . 10- 3 m - were used. Description of the experimental unit, sampling method 
and evaluation of results were already published 9 . Two experiments were perforrred: 
at the beginning of the first one the concentration of both fractions was uniformly 
distributed along the mixer length. At the beginning of the second one the fractions 
were completely segregated. At the end of the experiments, i.e. after reaching the 
stationary state the final particle distribution along the mixer was in both cases 
roughly equal, as follows from the results published in the above quoted study. 

These results were compared with the proposed model with dimensionless variables 
introduced in Eqs (20) and (21) by relations 

y=zjL; T=tBjL2; y=AjB. (22) 

The stationary distribution of concentration xJv) was determined by averaging 
the experimental data in the stationary state, where the conditions of symmetry 
were taken into account 

2 

Xis(Y) = xis(-y) = I [xfs(lyi) + xfs(l-yj)]j4, [-\ ~ y ~ 1], (23) 
p=l 

where p denotes measurements based on the mixed (p = 1) and segregated (p = 2) 
states. Comparison of this interpolation with the experimental results could be seen 
from Fig. 1. 
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Studies on Mixing 777 

As it was not possible to take samples closely at the wall of the mixer and we 
have not considered as possible to extrapolate with sufficient accuracy the concentra
tion of particles closely to the wall in the stationary state, the boundary condition 
(21) was considered to be valid in the last sampling points. Thus the value of L was 
considered as equal to 0·055 m. The differential equation (20) with the boundary 
condition (21) thus has, after transformation the form 

(24a) 

(24b) 

Initial conditions were determined from the averaged initial experimental data, i.e. 
in the case of initial uniform mixing from 

1 f+1 xfo = 2 xfo(.v) dy = 0·522 
-1 

[p = 1] (25) 

FIG. I 

Stationary concentration of the larger com
ponent in dependence on axial coordinate; 
- averaged according to Eq. (23), 0 experi
mental data reached from the initial uniform 
mixing (p = I), ® experimental data reached 
from the initial segregation (p = 2) 
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FIG. 2 

Concentration of larger component in de
pendence on axial coordinate for the initial 
uniform mixing; t = 4 min: - result of 
numerical solution, 0 experimental data, 
t = 10 min: -.-.- result of numerical solu
tion, '8 experimental data 
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and in the case of initial segregation, from 

= j+\fo(Y) dy = 0·064 [y > 0] 
+e 

xfo(Y) xfo(O) = 0·522 [y = 0] [p = 2] (26) 

= f-"xfo(Y) dy = 0·98 
-1 

[y < 0] 
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FIG. 3 

Concentration of the larger component in 
dependence on axial coordinate for the case 
of initial segregation; t = 4 min: - result 
of numerical solution, 0 experimental data, 
t = 120 min: -. -. - result of numerical 
solution, (!1 experimental data 
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FlO. 4 

Concentration of larger component in de
pendence on axial coordinate for the case 
of initial segregation; t = 40 min: - result 
of numerical solution, 0 experimental data 

FlO. 5 

Time dependence of concentration variance 
of the larger component with respect to the 

0·06 .!.. '0 mixer length (relations (27»; --- from 
o 

0·02 • 

o numerical solution of the diffusion equation 
(p = 2), 0 from experimental data (p = 2), 
-.-.- from numerical solution of the dif-

r-L--i;--l..-.; fusion equation (p = I), (!1 from experimental 
o~ --'---'--.......J60~----'----'---1"'"'2--iO! 300 420 1080 data (p = 1) 

T',min 
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Due to experimental inaccuracy the averaged concentrations at the beginning 
of the exeriment are not exactly equal to the averaged values at stationary state. 
'These inaccuracies were thus corrected during the calculation. 

In case of the first initial condition (25) the initial value of the asymmetry indicator, 
·defined by relation (18), equals zero and the solution of differential equation (24) 
is then symmetrical with respect to the centre of the mixer in every next moment, 
which means that also the asymmetry indicator then becomes equal to zero. In the 
second case its value is decreasing with time. 

The proposed differential equat~on was solved by the numerically simple explicite 
method, where the coefficients Band y were determined by the method of nonlinear 
regression (see e.g. 16) from the experiments measured earIier9 • (For the initial uniform 
-concentration distribution, the concentrations of the larger component were available, 
measured in time intervals 2, 4, 6, and 10 min from the beginning of the experiment 
and in time intervals 4, 10, 20, 40, 60, 90, 120, and 300 min after initial segregation). 
It was found that the coefficient B for the case of initial mixing (p = 1) was equal to 
2'47.10- 7 m2 S-1, and for the initial segregation (p = 2) the values were obtained: 
B = 5,48.10- 8 m2 S-1 and y = 4·39. The results of calculations and comparison 
with the experimental data are given in Figs 2 to 4. 

The variance of concentrations with respect to the mixer length was also calculated 
according to relations 

and was compared with the variance calculated from experimental data9 (see Fig. 5). 

DISCUSSION 

The assumption on the Markov property of the considered process can be considered 
as plausible in case that agglomerates of the solid phase do not form. Formation 
of such structures on a larger scale and first of all their relative stability with time 
would be obviously the cause of "memory" of the system. With sieved and dried 
sea sand used in the performed experiments such agglomerates did not form to an 
observable extent. 

Simplification of the three-dimensional process to a unidimensional one is for 
the given diffusion model correct. But the transitive probability density 13 is not 
symmetric with respect to the radial coordinate, due to gravitation and segr~gation 
phenomena. The corresponding experiment would thus require measurement of 
·concentration of the larger component in a large number of measuring points at 
the given axial coordinate. In our experiments this requirement was approximated 
by the analysis of samples in three randomly selected points for 10 equidistant values 
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of axial coordinates and in 10 points for the centre of axial symmetry (y = 0). The 
considered procedure can be the cause for a certain (even though random) deviation 
of experimental data from the values averaged with respect to the radial and angular 
coordinate. 

At description of mixing of the solid phase it is usual to express concentration of 
components in the form of mass fractions for the relative simplicity with which 
this quantity could be determined. This method was also used in this study. But it is 
necessary to mention that the quantity directly proportional to the probability 
density for the position of the studied component is e.g. the partial density ei of this 
component in the given point and considered moment, i.e. 

(28) 

where ec is density of the solid phase. Left-hand side term can be considered to be 
the definition, the approximate relation holds for the volume /::,.U of finite dimensions. 
with the centre in the point x in which in the time moment t are just located ni 

particles of the component. 

Function 13 denotes three-dimensional probability density, "unidimensional'~ 

partial density of the component can be approximated by the relation 

(29) 

From these considerations it is obvious that the mass fraction is approximately 
directly proportional to the corresponding probability density only in the case of 
lower concentrations of the component. 

Next discussion concerning the assumptions made on coefficients of the diffusion 
equation (10) is related to considerations of analogous assumptions made in the 
study by Fan and Shins. 

The drift velocity is in the mathematical theory of diffusion processes (see e.g,u) 
defined as the time derivative of the expected value of a small random change of 
position in our case in the axial direction, i.e. 

V(z, t) = lim ~ E[Z(t + /::"t) - z(t)] , 
4,-+0 /::"t 

(30) 

where Z - z denotes random shift of particle, which in the moment t was located 
in the point z. 
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In chemical engineering (see e.g.14), this expected value is approximated by use 
,of the sum of momentum of all particles of the mixture, which in the moment t 
are in close vicinity of the point z, i.e. 

(31) 

(see Eq. (29». Such definition enables to write the total material balance of the solid 
phase in the form 

a(! a - + - [V(z, t) (!] = 0, 
at az 

(32) 

where (! = (!l + (!j = (!(z, t) is the mass concentration of the solid phase in the 
infinitesimal volun:e as equal to the sum of partial densities of the larger and smaller 
components which in our case form the mixture. It is obvious that also in the case 
of particles of two different dimensions which are otherwise equal, this concentration 
will in general depend on the mutual local ratio of particles in the mixture and thus 
it will be a function of the axial coordinate and time. The term for the drift velocity 
then results from integration and arrangerr,ents of Eq. (32) which gives 

V(z, t) = ' dz'/(!(z, t) Iz a(!(z' t) 

-L at 
(33) 

on the 1::asis of which it would be possible to estimate experimentally these functions 
by use of the bulk density of solid phase in dependence on concentration of com
ponents. But the axial motion of the smaller and larger components at mixing in the 
horizontal mixer takes place in the opposite direction (see e.g.4 ) so that it is possible 
to assume that decrease of mass of one component in the volume 1tR2~Z is ap
proximately compensated by the increase in mass of the second component and thus 
(! is not changing significantly. Derivatives in Eq. (33) are then small and the drift 
velocity V(z, t) does not become significant. 

As long as we accept that description of concentration changes of components by 
use of mass fractions is sufficiently accurate, the assumption on the zero velocity 
drift is satisfied automatically as the sum of concentrations of both components is 
equal to one. 

A noticable attempt for the experimental estimate of the drift velocity 011 basis of 
the probability definiton17 

V(z, t) = lim ~f (z' - z)J(z', t + ~tlz, t) dz' ; 
At .... O ~t 6<lz'-zl 

lim ~f fdz' = 0 
At ... o ~t 6~ Iz'-zl 

(34) 
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proposed in the study by Fan and Shins cannot be considered as correct, especially 
at the wall of the mixer as results from the following example which enables analytical 
solution. It is known (see e.g. 17) that the probability solution of Eq. (1) with the 
reflexing boundary in the point z = 0 is the relation 

I(z'; ~tlz) = 1 [exp (_ (z' - Z)2) + exp (_. (z' + Z)2)J' [z, z' ~ 0] , 
.. /(2 TC~t) r1 2r12 ~t 2r12 ~t 

(35) 

where for D the term is substituted by D = (12/2. To satisfy the next condition, i.e. 
the second of Eqs (34) the relation (1 ~ l> must hold. After substitution from rela
tion (35) into the first one of Eqs (34) it is possible to demonstrate that the drift 
velocity on the reflexing boundary is given by the relation 

V(O) = lim ~ frl z'/(z'; ~tIO) dz' = lim (j J(2-) --> 00 (36) 
At-+O ~t 0 At-+O 1t~t 

which is obviously in contradiction with Eq. (1), where this value is identically equal 
to zero. Solution of the same equation without the reflexing boundary is the even 
function with respect to z; by substitution into the first of Eqs (34) and by integration 
of the first moment the drift velocity is equal to zero everywhere. 

However, the analogous experimental estimate of diffusion coefficientS (i.e. of the 
second moment) is from this point of view correct because the corresponding integra
tion gives identical values of (12/2 as the solution without the reflexing boundary. 
Situation is schematically depicted in Fig. 6. 

o L-_________________________ ~' 

FIG. 6 

Dependence for calculation of first two 
moments of the function in Eq. (35). 1 Solu
tion with the refiexing boundary in point 
z 0= 0, 2 solution without the renexing 
boundary, 3 / = z' (for the first moment), 
4/= z,2 (for the second moment) 
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The statement made concerning the symmetry of the diffusion coefficient with 
respect to the axial coordinate is based on the assumption that at constant speed 
of rotation of the mixer with the axis of rotation adjusted exactly horizontally is the 
condition for axial shift of components only their geometry and geometry of the 
mixer. These effects determine the field of radial velocities of the solid phase which 
is not homogeneous in the axial direction in the neighbourhood of horizontal walls 
of the mixer (see e.g.45). As is obvious from Fig. 2 the experimental data confirm 
validity of this assumption as they describe correctly the form of "pure" segregation 
in time. 

It is worth mentioning that application of £qs (14) and (16) has been proposed 
theoretically by Fan and Shin 8 , but the initial distribution of concentrations which was 
used in their study would lead to the physically incorrect solution as values of mass 
fractions could in some moments, at the beginning of the process, be larger than one. 

The assumption about mutual interaction of diffusion coefficients describing first 
of all mixing and segregation of weighed asymmetric mass distributions of the larger 
component in both halves of the mixer is an attempt for solution of the mentioned 
problem. It leads to an implicite dependence of the diffusion coefficient on time. 
In the explicite form this dependence was proposed earlier by one of the authors of 
this study12. 

From Fig. 3 it is obvious that in short time intervals from the beginning significantly 
appears first of all the mixing process, in long time intervals of the process first of all 
segregation. These conclusions are in a reasonably good agreement with the experi
m(:'11ts. But the proposed model does not describe in a satisfactory manner the actual 
case in the medium time intervals where the effect of both coefficients is significant 
(see Fig. 4). This conclusion is obvious also from Fig. 5 where the time dependences 
of concentration variances obtained on basis of the experiments and according to 
the proposed model arc compared. These were calculated in both cases according 
to relations (27). Better agreement could be obtained perhaps by application of 
a more complicated function instead of the linear combination of both diffusion 
coefficients. 

It is possible to state that the part of experiments performed by Fan and ShinS 
confirms our conclusion on the prevailing effect of the symmetric segregation coeffi
cient at the end of the experiment (sec Fig. 5£ of the quoted study) while is obvious 
the qualitative indirect proportionality between the diffusion coefficient and sta
tionary concentration distribution. 

Moreover, an attempt has been made to compare the diffusion coefficients given 
in literature2 •8 with the values obtained in this study. 

First of all it is necessary to express the dependence of this quantity on the axial 
coordinate with respect to the fact that the mixer described in this study is consi
derably shorter than the mixer quoted in the above-mentioned study8. (Dimensions 
of the mixer described in the study by Hogg et al. 2 are from this point of view in-
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significant, diffusion coefficient describing mixing of particles of equal dimensions 
is a constant). The dimensionless mixer length, defined as the ratio of the half mixer 
length related to its diameter L/R = 2·64 for the mixer in the study by Fan and Shin8 

in comparison to L/R = 1-62 of this study. In an attempt to eliminate the effect of 
this difference of dimensionless lengths in this study the results of Donald and Rose
man4 ,5 were used, according to which considerable changes in concentration with 
length take place in close vicinity of side walls of the mixer due to changes of the 
gradient of radial velocity. In the central part of relatively long mi;c.ers this gradient is 
equal to zero and does not affect mixing of the solid phase. In graphical comparison 
of diffusion coefficients the dimensionless length of the here used mixer was increased 
for the difference of dimensionless lengths 2·64 -1·62 = 1·02. This difference was 
situated into the central part of the mixer and it was assumed that the diffusion 
coefficient will not change here. The situation is demonstrated in Fig. 7, on the upper 
coordinate axis. The line segments at the left and right hand parts of this axis taken 
together (without the middle line segment) correspond to the horizontal coordinate 
axes in Figs 1-4 of this study. The lower coordinate axis in Fig. 7 is identical with 
the horizontal coordinate axis in Fig. 3 of the study by Fan and ShinS. Next the 
diffusion coefficients calculated according to relations (19) and (20) were recalculated 
for concentration of the smaller component as they are given in the quoted study. 
For this calculation the following equation was used 

D(z, t) = AI(t) + B[l - l(t)]/[l - XiS(Z)] _ (37) 

These results were related to one revolution of the mixer. 

-1 -0·5 0 z o 0·5 

FIG. 7 

Diffusion coefficient in dependence on axial coordinate 1 Values at the beginning of the experi
ment (p = 2; ro = 0·552; L/ R = 1·62), 2 values at the end of the experiment (p = 2; ro = 0·552; 
L/ R = 1·62), 3 data by Fan and Shin8 (ro = 0·604; L/ R = 2·64), 4 data by Fan and Shin8 

(co = 0·667; L/R = 2'64), 0 data by Hogg et al.2 (co = 1·0) 
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Results of these calculations are demonstrated in Fig. 7, where the dependence of 
the diffusion coefficient on axial coordinate is given at the beginning (curve 1) and 
at the end (curve 2) of mixing. In the central - extended .- part of the axis the curves 
are dashed. In agreement with the considerations made in the preceding paragraph 
they are only an approximation and do not represent real values. The curves 3 
and 4 are taken from Fig. 3 of the study8. The parameter is in this case the ratio 
of mean dimensions of smaller and larger particles, denoted by the symbol w. 

It is obvious that the dependence of the diffusion coefficient is in all cases the same: 
toward the mixer centre starting from the walls it at first decreases and then passes 
through a minimum which is for our data not very profound. Coordinates at which 
the dependence reaches the minimum is in all cases approximately the same 
(-0'4 LjR) which confirms conclusions by Donald and Roseman4 concerning the 
effect of walls on the velocity gradient. Diffusion coefficients for sea sand are roughly 
for one order of magnitude smaller than for spherical lucite particJes8 • This is because 
the resistance to axial motion ("viscosity") of individual particles is in the case of 
spheres considerably lower than with particles of nonuniform shapes. The diffusion 
coefficient for "pure" mixing of very small spherical particles2 is situated approxima
tely in between these data. 

More detailed study of this problem would require experimental investigation 
of different systems of the charge and geometric arrangement of the mixer. 

CONCLUSIONS 

On basis of considerations made in this study and evaluation of experimental data 
obtained by earlier investigations the following most important conclusions can be 
made: 

1) The set of assumptions was specified at which it is possible to consider the 
mixing of solid particles in the horizontal cylindrical mixer to be the Markov diffu
sion process with the adequate Kolmogorov's equation and when the diffusion 
coefficients in this equation could be determined. 

2) The term of "pure" segregation was defined, which represents relocation of two 
components of the solid phase of different sizes, when concentration of these com
ponents is in each moment symmetric with respect to the vertical plane which divides 
the mixer into two identical halves. On basis of good agreement with the experiments 
it was proved that this operation can be described by use of the diffusion coefficient 
which is the even function of axial coordinate. 

3) A model was proposed which describes mixing of two components of the solid 
phase of different sizes which are at the beginning nonuniformly distributed as the 
linear superposition of the classic diffusion and "pure" segregation and which leads 
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to the conclusion that the resulting diffusion coefficient is the implicite function of 
time. The experiments have confirmed validity of this model only in the initial and 
final states of mixing when only one of the mechanisms is dominant. 

LIST OF SYMBOLS 

c concentration (general) 
D diffusion coefficient, m 2 S-l 
/ probability density, m - 1 

f 3 three-dimensional probability density, m - 3 

1 asymmetry indicator 
L half of mixer length, m 
m mass of particle, kg 
n number of particles 
R radius of mixer, m 
r radial coordinate, m 

S surface area of the mixer, m2 

t time, s 
U volume, m3 

V drift velocity, m s-l 
x mass fraction 
x radius-vector, m 
y dimensionless axial coordinate 
Z position of particle (random variable), m 
;; axial coordinate, m 
" integration limit (see Eq. (34» 
(! density, kg m - 3 

IfJ angular coordinate, rad 
u 2 variance 
, dimensionless time 
(() ratio of mean dimensions of smaller and larger particles 

Subscripts 

c related to solid phase 
related to larger component 

j related to smaller component 
S related to the mixer surface 
s related to symmetric conditions 
o related to initial conditions 
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